About this course
Learn how to take a product from initial concept, to design and manufacture. Our 4-year master's in Mechanical Engineering with industry placement will put you on the path to becoming a chartered engineer. You'll learn about mechanical design, structures and materials, then select specialist topics to study. Project work throughout the degree provides the opportunity to apply your design skills to real-world problems.
This integrated master's lets you select a specialist theme pathway for years 3 and 4, or stay on in this generalised Mechanical Engineering theme. This general theme lets you take optional modules from the specialised courses in years 3 and 4.
You'll cover the essential principles of engineering, and learn about:
- modelling and computing
- systems design
- law
- management
In your third year you'll complete an individual research project and in year 4 you'll take part in a group design project. These projects are often linked to current research or topics that have practical relevance to industry.
As part of this course you can:
- use our design workshops and studios
- develop your design and computing skills
- showcase your work in our annual Engineering Design Show
- apply your knowledge to your choice of specialist areas, from automobiles to mechatronics
- go on site visits to experience engineering in practice
Year in industry
Enhance your employability by taking this course with a paid industrial placement year.
Apply using:
- Course name: Mechanical Engineering with Industrial Placement Year
- UCAS code: 30HH
You'll spend this extra year at an engineering firm, applying the skills and knowledge you've learned so far.
The fee is 20% of the standard annual tuition fee.
Study this course in Malaysia
You can also study this course at University of Southampton Malaysia.
Find out more about our Malaysia courses and how to apply
We regularly review our courses to ensure and improve quality. This course may be revised as a result of this. Any revision will be balanced against the requirement that the student should receive the educational service expected. Find out why, when, and how we might make changes.
Our courses are regulated in England by the Office for Students (OfS).
Accreditations
This course is accredited by the Institution of Mechanical Engineers (IMechE) as meeting the academic requirement, in full, for Chartered Engineer registration.
This course is accredited by:
Course locations
This course is based at Highfield and Boldrewood.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Entry requirements
For Academic year 202526
A-levels
A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed).
A-levels additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking. Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAA including mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Diploma
Pass, with 38 points overall with 19 points required at Higher Level, including 6 at Higher Level in Physics and 6 at Higher Level in Mathematics (Analysis and Approaches) or 7 at Higher Level in Mathematics (Applications and Interpretation)
International Baccalaureate Diploma additional information
Applicants who have not studied the required subjects can apply for the Engineering/Physics/Mathematics Foundation Year
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus grades A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed).
or
D* in the BTEC National Extended Certificate plus grades AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed).
We will consider the BTEC National Diploma if studied alongside A-levels in mathematics and physics.
We will consider the BTEC National Extended Diploma in Engineering if studied alongside A-level mathematics.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
QCF BTEC
D in the BTEC Subsidiary Diploma plus A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed).
or
D* in the BTEC Subsidiary Diploma plus AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed).
We will consider the BTEC Diploma if studied alongside A-levels in mathematics and physics.
We will consider the BTEC Extended Diploma in Engineering if studied alongside A-level mathematics.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Not accepted for this course. Applicants with an Access to HE Diploma in a relevant subject should apply for the Engineering/Physics/Mathematics Foundation Year
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H1 H1 H2 H2 H2 including mathematics, applied mathematics and physics
Irish Leaving Certificate (first awarded 2016)
A1 A1 A1 A2 A2 A2 including mathematics, applied mathematics and physics
Irish certificate additional information
Applicants who have not studied the required subjects can apply for the Engineering/Physics/Mathematics Foundation Year
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D2, D3, D3 in three Principal subjects including mathematics (minimum grade D3) and physics (minimum grade D3)
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A levels to achieve the equivalent of the typical offer, where D2 can be used in lieu of A-level grade A* or grade D3 can be used in lieu of A-level grade A. Applicants who have not studied mathematics and/or physics can apply for the Engineering/Physics/Mathematics Foundation Year
Welsh Baccalaureate
A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed) or A*A from two A levels including mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed) and A from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking. Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
Welsh Baccalaureate contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
T-Level
Not accepted for this course. Applicants with a T level Technical Qualification in a relevant subject can apply for the Engineering/Physics/Mathematics Foundation Year
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
If you don’t meet the English language requirements, you can achieve the level you need by completing a pre-sessional English programme before you start your course.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Ignite your Journey scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Foundation year for engineering, physics, maths and geophysics
A foundation year will give you the skills and knowledge to progress to this course if you don't have the right qualifications for direct entry.
It could be the right option if you:
- have A levels, or equivalent international qualifications, in subjects other than the ones needed for direct entry
- have international qualifications in relevant subjects but not at A level equivalent
- have a BTEC Extended Diploma in a relevant subject
- are studying an Access course in a relevant subject
- are a mature student with relevant experience or study
You'll also need to show that you have strong maths skills.
Find full details on our Engineering, Maths, Physics, Geophysics Foundation Year page.
For Academic year 202425
A-levels
A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed).
A-levels additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking. Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAA including mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows: AAA or A*AB including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed).
International Baccalaureate Diploma
Pass, with 38 points overall with 19 points required at Higher Level, including 6 at Higher Level in Physics and 6 at Higher Level in Mathematics (Analysis and Approaches) or 7 at Higher Level in Mathematics (Applications and Interpretation)
International Baccalaureate Diploma additional information
Applicants who have not studied the required subjects can apply for the Engineering/Physics/Mathematics Foundation Year
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus grades A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed).
or
D* in the BTEC National Extended Certificate plus grades AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed).
We will consider the BTEC National Diploma if studied alongside A-levels in mathematics and physics.
We will consider the BTEC National Extended Diploma in Engineering if studied alongside A-level mathematics.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
QCF BTEC
D in the BTEC Subsidiary Diploma plus A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed).
or
D* in the BTEC Subsidiary Diploma plus AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed).
We will consider the BTEC Diploma if studied alongside A-levels in mathematics and physics.
We will consider the BTEC Extended Diploma in Engineering if studied alongside A-level mathematics.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Not accepted for this course. Applicants with an Access to HE Diploma in a relevant subject should apply for the Engineering/Physics/Mathematics Foundation Year
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H1 H1 H2 H2 H2 including mathematics, applied mathematics and physics
Irish Leaving Certificate (first awarded 2016)
A1 A1 A1 A2 A2 A2 including mathematics, applied mathematics and physics
Irish certificate additional information
Applicants who have not studied the required subjects can apply for the Engineering/Physics/Mathematics Foundation Year
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D2, D3, D3 in three Principal subjects including mathematics (minimum grade D3) and physics (minimum grade D3)
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A levels to achieve the equivalent of the typical offer, where D2 can be used in lieu of A-level grade A* or grade D3 can be used in lieu of A-level grade A. Applicants who have not studied mathematics and/or physics can apply for the Engineering/Physics/Mathematics Foundation Year
Welsh Baccalaureate
A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed) or A*A from two A levels including mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed) and A from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking. Applicants who have not studied mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year
Welsh Baccalaureate contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
T-Level
Not accepted for this course. Applicants with a T level Technical Qualification in a relevant subject can apply for the Engineering/Physics/Mathematics Foundation Year
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
If you don’t meet the English language requirements, you can achieve the level you need by completing a pre-sessional English programme before you start your course.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Ignite your Journey scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Foundation year for engineering, physics, maths and geophysics
A foundation year will give you the skills and knowledge to progress to this course if you don't have the right qualifications for direct entry.
It could be the right option if you:
- have A levels, or equivalent international qualifications, in subjects other than the ones needed for direct entry
- have international qualifications in relevant subjects but not at A level equivalent
- have a BTEC Extended Diploma in a relevant subject
- are studying an Access course in a relevant subject
- are a mature student with relevant experience or study
You'll also need to show that you have strong maths skills.
Find full details on our Engineering, Maths, Physics, Geophysics Foundation Year page.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: [email protected]
Tel: +44(0)23 8059 5000
Course structure
Modules in the first 2 years focus on the fundamentals of mechanical engineering. You’ll also gain the skills to apply your theoretical understanding to a wide range of real design problems.
In years 3 and 4 you'll extend your knowledge and skills by taking part in both individual and group projects. You can select specialist modules to focus on areas that interest you.
Year 1 overview
You'll take part in our award-winning induction programme and gain practical experience. Teams of new students work together to design and create. For example, you could take apart and put back together a 4 stroke engine.
The first year provides a background in engineering science, emphasising the mechanical engineering aspects. This includes a workshop training course.
Core modules cover topics such as:
- thermofluids
- materials
- solid mechanics
- electrical and electronics systems
You'll develop your design and programming skills, preparing you to design, build and test engineering systems, components and mechanisms.
Year 2 overview
You'll explore the main mechanical engineering subjects with tailored modules. This includes topics such as:
- fluid mechanics
- drives and machines
- vibration
You'll also take part in a challenging design project, such as designing an autonomous robot or quadcopter.
At the end of year 2, you can apply to spend a semester abroad at one of our partner universities, in Sweden, New Zealand, France and the USA. This provides the opportunity to study in a different environment, with all modules taught in English.
Year 3 overview
You'll undertake an individual project that usually takes the form of a design or research exercise.
You can also choose from specialist modules covering areas such as:
- sustainable energy and power generation
- biomaterials
- robotic systems
- automotive power train and chassis
Year 4 overview
You'll take part in a group design project, these are often linked to current research activities or topics that have practical relevance to industry. You'll apply your conceptual engineering and scientific knowledge to an engineering design problem. Previous projects have included:
- a bladeless wind turbine to produce renewable energy
- a lower-limb exoskeleton for rehabilitation
- a Mars rover
As a team, you'll develop your ideas through detailed design, experimentation, computer modelling and manufacture.
Further optional modules cover topics such as:
- aircraft propulsion
- advanced sensors and condition monitoring
- failure of materials and components
Want more detail? See all the modules in the course.
Modules
The modules outlined provide examples of what you can expect to learn on this degree course based on recent academic teaching. As a research-led University, we undertake a continuous review of our course to ensure quality enhancement and to manage our resources. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Find out why, when and how we might make changes.
For entry in academic year 2024 to 2025
Year 1 modules
You must study the following modules in year 1:
An Introduction to Engineering Design
Engineers design physical products, systems and processes. They think big with vision, research, analyse, create, refine and deliver solutions. Engineering is a design discipline that is broad, creative, logical and holistic, while also focused and ex...
Electrical and Electronics Systems
It is difficult to imagine what the world would be like without electricity: homes without electric light, without television or radio, without motors to drive the washing machine, the refrigerator and the vacuum cleaner; offices without computers, word p...
Mathematics for Engineering and the Environment
This course lays the mathematical foundation for all engineering degrees. Its structure allows students with different levels of previous knowledge to work at their own pace. Pre-requisite for MATH2048 One of the pre-requisites for MATH3081 and MATH...
Mechanical Systems Analysis
This module builds upon the technical content of the other first year modules and develops skills needed for the professional application of Mechanical Engineering. The ability to solve new challenges through innovation and through application of scientif...
Mechanics, Structures and Materials
This module covers the fundamentals of mechanics, statics, dynamics and materials. Providing a firm basis for all subsequent modules in these areas in later Parts and a further career in engineering. This module consists of four parts, Statics-1, Statics...
ThermoFluids
Core Thermodynamics and Fluid Mechanics for all Engineering Themes. Students should be aware that this module requires pre requisites of Mathematics
Year 2 modules
You must study the following modules in year 2:
Electronics and Control
Modern mechanical and acoustic systems contain numerous electronic and control components. For example, an electric vehicle may have speed, traction and active noise control systems. Practicing Mechanical and Acoustical Engineers therefore require a worki...
Fluid Mechanics
This module covers a wide range of topics of fluid mechanics in order to offer basic knowledge and foundations applicable to various mechanical and acoustical engineering problems. This module introduces fundamental principles of conservation (mass, momen...
Materials and Structures
This second year module continues to develop the links between structures and materials, building on the fundamentals established in the first year course on mechanics, structures and materials. The relationship between composition, microstructure and pro...
Mathematics for Engineering and the Environment Part II
The module aims to teach mathematical methods relevant for engineering. The first part is about differential equations and how solve them, from ordinary differential equations to partial differential equations. The second part is about either vector calcu...
Mechanics, Machines and Vibration
This module will help the students to understand the fundamental concepts in Kinematics and Dynamics of multi-body systems. It provides an understanding of the application of simple mathematical models to vibration problems in engineering using different...
Systems Design and Computing
This module follows on from FEEG1201 Introduction to Engineering Design where students are introduced to design processes supported by computing methods. In FEEG2001 students address the design of a system consisting of a number of interacting sub-systems...
Thermodynamics
Enables students to analyse and design advanced power, propulsion, heating and cooling systems using thermodynamic principles.
Year 3 modules
You must study the following modules in year 3:
Engineering Design with Management
This module will introduce you to the practice of mechanical engineering design as applied to one of a number of contrasting applications. It will also enable you to understand key management topics that are relevant to engineering practice, specifically ...
Finite Element Analysis in Solid Mechanics
Many real-world engineering structures are too complex for their behaviour to be understood using an ‘exact’ analytical or theoretical method alone. Therefore, in practice we often use approximate numerical or simulation-based tools for structural analysi...
Heat Transfer and Applications
This module gives a comprehensive coverage of the classical heat transfer syllables, including steady and transient heat conduction, convection and radiation. While the underlying mathematics are properly elaborated, their conceptual significance and phys...
Individual Project
The Individual Project is a learning experience that enables you to carry out research and bring together many of the concepts that you have learnt over the first two years of the course as well as the knowledge and skills learnt during part III. You w...
Manufacturing and Materials
This module manufacturing and materials is intended to develop a deeper understanding of the relationship between design, manufacturing processing and materials properties. This module discusses various manufacturing methods including casting, forming, we...
You must also choose from the following modules in year 3:
Automotive Chassis and Powertrain
This module will first be offered in 2021/22. This module introduces students to the design of safe and eco-friendly vehicles for road transportation in the twenty-first century. Different aspects of design and operation of modern automobile systems wi...
Biomaterials
A biomaterial can be described as a material used in a biomedical device intended to interact with biological systems. The selection of an appropriate biomaterial is critical to the performance of an implant. For a hip replacement, properties such as good...
Control and Instrumentation
This module covers topics in classical and modern control analysis and design with a focus on linear time invariant systems. Fundamental design and analysis in the time and frequency domain are reviewed and developed. The properties of discrete-time syste...
Failure of Materials and Components
In this module, the emphasis moves away from alloy development and design, and focuses on the performance of structural materials in a range of engineering applications. The lectures draw on examples from applications of ceramics, steel, Al, Ti and Ni bas...
Fundamentals of Acoustics
This module provides an introduction to the basic elements of acoustics for the purpose of meeting the fundamental needs of practising engineers. This module provides the knowledge and tools to understand and predict the behaviour of complex acoustical sy...
Human Factors in Engineering
This module provides an introduction to the role human factors in Engineering. It demonstrates how the characteristics and capabilities of people can be taken into account to optimise the design of things used by people, the environments in which they li...
Marine Engineering
This module introduces the fundamental principles, design and analysis of ship power plants, drive trains and auxiliary systems found on-board marine vehicles. Students will be introduced to the operational principles, machinery configurations, perform...
Technology Fundamentals for Sustainable Energy
This module will be first delivered in 2021/22. How can we provide clean, safe, sustainable energy for the world during the twenty-first century? This module delivers a integral treatise on the fundamental processes and theories underlying the technolo...
Year 4 modules
You must study the following modules in year 4:
Group Design Project
This group project enables you to apply your conceptual engineering and science knowledge to an engineering design problem. The ideas are developed through detailed design, experimentation, computer modelling and/or manufacture. You will also consider and...
Materials, Manufacturing and Supply Chain Management
This module will first be offered in the 2022/23 academic year. This module provides a case study-led approach to topics relevant to contemporary manufacturing and supply chain management processes. The course will apply knowledge of engineering materi...
You must also choose from the following modules in year 4:
Active Control of Sound and Vibration
This aim of this module is to build an understanding of the physics of active control. Active control is a method for realising control through the use of secondary sources or actuation, whose outputs are designed to modify the response of a system. Techn...
Advanced Electrical Systems
To provide an introduction to power system analysis and power electronics, and an in-depth coverage of electrical machine operation and design in the context of applications from the fields of renewable energy, marine propulsion and electric vehicles.
Advanced Finite Element Analysis
This module is aimed at providing exposure to and understanding of advanced, specialist areas of Finite Element Analysis and their underlying Solid/Structural Mechanics concepts. It then concentrates on using this knowledge for solving discipline-specifi...
Advanced Sensors and Condition Monitoring
This module explores from traditional conditioning monitoring of machinery to biomechanical systems (i.e. sensors to monitor body forces and motions). It covers condition monitoring strategies, including international standards, monitoring procedures and...
Aeroacoustics
This module covers aerodynamic noise sources and sound propagation in moving media. Aeroacoustics is of great importance in engineering settings involving high speed flows, including transport (aeroplane, aeroengine, automobile, train), industrial proces...
Aircraft Propulsion
This module develops aerodynamic and thermodynamic methods for design of gas turbine engines. Starting from considerations of aircraft requirements and basic thermodynamics and fluid mechanics, students learn how the overall engine design can be tailored ...
Automotive Propulsion
Motorised transport has transformed many aspects of human life over the past 120 years. Today’s automotive engineers, however, face the unresolved challenge of continuing that transformation in a sustainable manner. Therefore this module develops the stud...
Composites Engineering Design and Mechanics
This module provides an in depth coverage of the mechanics of fibre-reinforced polymer materials and structures. The core of the course encompass modelling of the 2D orthotropic lamina reduced from 3D continuum mechanics for anisotropic solids, classical ...
Design Search and Optimisation (DSO) - Principles, Methods, Parameterizations and Case Studies
This module introduces students to formal design search and optimization (DSO) approaches using a mixture of lectures covering theory and practice and a series of worked case studies with student participation.
Intelligent Mobile Robotics
This module teaches the theory and practice of robotic perception and reasoning needed for mobile autonomous vehicles to operate in dynamic, unstructured environments across land, sea and air. You will learn probabilistic methods so that robots can self-l...
Introduction to Machine Learning
Machine Learning advances are revolutionising our world. At a fundamental level, Machine Learning deals with the extraction of useful information from large and complex datasets. There are now many applications, from the automatic understanding and proces...
Maritime Robotics
This module introduces the theoretical and practical design of maritime robotics systems such as autonomous underwater and surface vehicles (AUVs, ASVs). Students will be introduced to the theoretical principles underlying their design including aspect...
Materials for Transport Applications
This module considers metallic alloys with special reference to applications in transport applications. The main materials considered are aluminium, titanium and nickel based alloys, and steel. Also metal based composites, and high temperature materials s...
Sustainable energy systems, resources and usage
The module provides an understanding of general energy concepts and how to apply energy related techniques gained through specialist courses to every-day situations. We will also take a look at the energy flows around our planet and consider issues such a...
Thermo-Fluid Engineering for Carbon Capture, Utilisation and Storage (CCUS)
Hydrocarbon fuels contribute more than 85% of world energy production, but also contribute more than 60% of anthropogenic greenhouse gas emissions. As research continues to find alternative and more sustainable energy production technologies hydrocarbon f...
Tribology for Future Mobility
Tribological interactions are ubiquitous and have profound impact across all areas of engineering and everyday life. This module places emphasis on the future application of tribological engineering to address the contact mechanics, friction, wear, lubri...
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Course time
How you'll spend your course time:
Year 1
Study time
Your scheduled learning, teaching and independent study for year 1:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written exams
Your assessment breakdown
Year 1:
Year 2
Study time
Your scheduled learning, teaching and independent study for year 2:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written exams
Your assessment breakdown
Year 2:
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
John Walker is the course leader.
Careers
Our courses are fully accredited by the Institution of Mechanical Engineers, and offer a route to chartered mechanical engineer status.
We're also a designated university for the Defence Technical Undergraduate Scheme (DTUS).
Our collaboration with Lloyd's Register at our Boldrewood Innovation Campus helps our students gain industry experience through projects and placements.
Recent mechanical engineering graduates have gone on to work at organisations including:
- Aston Martin Lagonda
- Babcock
- Dyson
- ExxonMobil
- Rolls-Royce
- Siemens
- Formula 1 teams
Roles you'll be suited for include:
- mechanical engineer
- automotive engineer
- CAD technician
- control and instrumentation engineer
- maintenance engineer
- nuclear engineer
You'll develop transferable skills that are highly sought after in careers outside engineering. These include:
- problem-solving
- teamwork
- communication
- IT
Careers services at Southampton
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers, Employability and Student Enterprise team will support you. This support includes:
- work experience schemes
- CV and interview skills and workshops
- networking events
- careers fairs attended by top employers
- a wealth of volunteering opportunities
- study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, Futureworlds, is open to every student.
Work in industry
You can take an Industrial Placement Year as part of this course.
You can apply what you have learned so far on your course, try out a potential career, and develop new skills and experience to help you stand out to future employers.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £29,400.
Your fees will remain the same each year from when you start studying this course. This includes if you suspend and return.
What your fees pay for
Your tuition fees pay for the full cost of tuition and standard exams.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. There may also be extra costs for retake and professional exams.
Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant to help fund your studies.
We award scholarships and grants for travel, academic excellence, or to students from under-represented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within 2 to 6 weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: [email protected]
Tel: +44(0)23 8059 5000
Related courses
Mechanical Engineering (MEng) is a course in the Mechanical engineering subject area. Here are some other courses within this subject area:
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English courses
-
Subjects
- Acoustical engineering
- Audiology
- Biomedical and medical engineering
- Civil engineering
- Every day I’m completely immersed in an environment that’s creative in all aspects
- Everything I learn feels so relevant, even If it’s a subject rooted in the past
- Maritime engineering
- Photonics and optoelectronics
- Social statistics and demography
-
PhDs and research degrees
- Create your own research project
-
Find a PhD project
- A missing link between continental shelves and the deep sea: Have we underestimated the importance of land-detached canyons?
- A seismic study of the continent-ocean transition southwest of the UK
- A study of rolling contact fatigue in electric vehicles (EVs)
- Acoustic monitoring of forest exploitation to establish community perspectives of sustainable hunting
- Acoustic sensing and characterisation of soil organic matter
- Advancing intersectional geographies of diaspora-led development in times of multiple crises
- Aero engine fan wake turbulence – Simulation and wind tunnel experiments
- Against Climate Change (DACC): improving the estimates of forest fire smoke emissions
- All-in-one Mars in-situ resource utilisation (ISRU) system and life-supporting using non-thermal plasma
- An electromagnetic study of the continent-ocean transition southwest of the UK
- An investigation of the relationship between health, home and law in the context of poor and precarious housing, and complex and advanced illness
- Antibiotic resistance genes in chalk streams
- Being autistic in care: Understanding differences in care experiences including breakdowns in placements for autistic and non-autistic children
- Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sediments
- Bloom and bust: seasonal cycles of phytoplankton and carbon flux
- British Black Lives Matter: The emergence of a modern civil rights movement
- Building physics for low carbon comfort using artificial intelligence
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Business studies and management: accounting
- Business studies and management: banking and finance
- Business studies and management: decision analytics and risk
- Business studies and management: digital and data driven marketing
- Business studies and management: human resources (HR) management and organisational behaviour
- Business studies and management: strategy, innovation and entrepreneurship
- Carbon storage in reactive rock systems: determining the coupling of geo-chemo-mechanical processes in reactive transport
- Cascading hazards from the largest volcanic eruption in over a century: What happened when Hunga Tonga-Hunga Ha’apai erupted in January 2022?
- Characterisation of cast austenitic stainless steels using ultrasonic backscatter and artificial intelligence
- Climate Change effects on the developmental physiology of the small-spotted catshark
- Climate at the time of the Human settlement of the Eastern Pacific
- Collaborative privacy in data marketplaces
- Compatibility of climate and biodiversity targets under future land use change
- Cost of living in modern and fossil animals
- Creative clusters in rural, coastal and post-industrial towns
- Deep oceanic convection: the outsized role of small-scale processes
- Defect categories and their realisation in supersymmetric gauge theory
- Defining the Marine Fisheries-Energy-Environment Nexus: Learning from shocks to enhance natural resource resilience
- Design and fabrication of next generation optical fibres
- Developing a practical application of unmanned aerial vehicle technologies for conservation research and monitoring of endangered wildlife
- Development and evolution of animal biomineral skeletons
- Development of all-in-one in-situ resource utilisation system for crewed Mars exploration missions
- Ecological role of offshore artificial structures
- Effect of embankment and subgrade weathering on railway track performance
- Efficient ‘whole-life’ anchoring systems for offshore floating renewables
- Electrochemical sensing of the sea surface microlayer
- Engagement with nature among children from minority ethnic backgrounds
- Enhancing UAV manoeuvres and control using distributed sensor arrays
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Environmental and genetic determinants of Brassica crop damage by the agricultural pest Diamondback moth
- Estimating marine mammal abundance and distribution from passive acoustic and biotelemetry data
- Evolution of symbiosis in a warmer world
- Examining evolutionary loss of calcification in coccolithophores
- Explainable AI (XAI) for health
- Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
- Exploring dynamics of natural capital in coastal barrier systems
- Exploring the mechanisms of microplastics incorporation and their influence on the functioning of coral holobionts
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Exploring the trans-local nature of cultural scene
- Facilitating forest restoration sustainability of tropical swidden agriculture
- Faulting, fluids and geohazards within subduction zone forearcs
- Faulting, magmatism and fluid flow during volcanic rifting in East Africa
- Fingerprinting environmental releases from nuclear facilities
- Flexible hybrid thermoelectric materials for wearable energy harvesting
- Floating hydrokinetic power converter
- Glacial sedimentology associated subglacial hydrology
- Green and sustainable Internet of Things
- How do antimicrobial peptides alter T cell cytokine production?
- How do calcifying marine organisms grow? Determining the role of non-classical precipitation processes in biogenic marine calcite formation
- How do neutrophils alter T cell metabolism?
- How well can we predict future changes in biodiversity using machine learning?
- Hydrant dynamics for acoustic leak detection in water pipes
- If ‘Black Lives Matter’, do ‘Asian Lives Matter’ too? Impact trajectories of organisation activism on wellbeing of ethnic minority communities
- Illuminating luciferin bioluminescence in dinoflagellates
- Imaging quantum materials with an XFEL
- Impact of neuromodulating drugs on gut microbiome homeostasis
- Impact of pharmaceuticals in the marine environment in a changing world
- Improving subsea navigation using environment observations for long term autonomy
- Information theoretic methods for sensor management
- Installation effect on the noise of small high speed fans
- Integrated earth observation mapping change land sea
- Interconnections of past greenhouse climates
- Investigating IgG cell depletion mechanisms
- Is ocean mixing upside down? How mixing processes drive upwelling in a deep-ocean basin
- Landing gear aerodynamics and aeroacoustics
- Lightweight gas storage: real-world strategies for the hydrogen economy
- Machine learning for multi-robot perception
- Machine learning for multi-robot perception
- Marine ecosystem responses to past climate change and its oceanographic impacts
- Mechanical effects in the surf zone - in situ electrochemical sensing
- Microfluidic cell isolation systems for sepsis
- Migrant entrepreneurship, gender and generation: context and family dynamics in small town Britain
- Miniaturisation in fishes: evolutionary and ecological perspectives
- Modelling high-power fibre laser and amplifier stability
- Modelling soil dewatering and recharge for cost-effective and climate resilient infrastructure
- Modelling the evolution of adaptive responses to climate change across spatial landscapes
- Nanomaterials sensors for biomedicine and/or the environment
- New high-resolution observations of ocean surface current and winds from innovative airborne and satellite measurements
- New perspectives on ocean photosynthesis
- Novel methods of detecting carbon cycling pathways in lakes and their impact on ecosystem change
- Novel technologies for cyber-physical security
- Novel transparent conducting films with unusual optoelectronic properties
- Novel wavelength fibre lasers for industrial applications
- Ocean circulation and the Southern Ocean carbon sink
- Ocean influence on recent climate extremes
- Ocean methane sensing using novel surface plasmon resonance technology
- Ocean physics and ecology: can robots disentangle the mix?
- Ocean-based Carbon Dioxide Removal: Assessing the utility of coastal enhanced weathering
- Offshore renewable energy (ORE) foundations on rock seabeds: advancing design through analogue testing and modelling
- Optical fibre sensing for acoustic leak detection in buried pipelines
- Optimal energy transfer in nonlinear systems
- Optimal energy transfer in nonlinear systems
- Optimizing machine learning for embedded systems
- Oxidation of fossil organic matter as a source of atmospheric CO2
- Partnership dissolution and re-formation in later life among individuals from minority ethnic communities in the UK
- Personalized multimodal human-robot interactions
- Preventing disease by enhancing the cleaning power of domestic water taps using sound
- Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
- Quantifying the response and sensitivity of tropical forest carbon sinks to various drivers
- Quantifying variability in phytoplankton electron requirements for carbon fixation
- Resilient and sustainable steel-framed building structures
- Resolving Antarctic meltwater events in Southern Ocean marine sediments and exploring their significance using climate models
- Robust acoustic leak detection in water pipes using contact sound guides
- Silicon synapses for artificial intelligence hardware
- Smart photon delivery via reconfigurable optical fibres
- The Gulf Stream control of the North Atlantic carbon sink
- The Mayflower Studentship: a prestigious fully funded PhD studentship in bioscience
- The calming effect of group living in social fishes
- The duration of ridge flank hydrothermal exchange and its role in global biogeochemical cycles
- The evolution of symmetry in echinoderms
- The impact of early life stress on neuronal enhancer function
- The oceanic fingerprints on changing monsoons over South and Southeast Asia
- The role of iron in nitrogen fixation and photosynthesis in changing polar oceans
- The role of singlet oxygen signaling in plant responses to heat and drought stress
- Time variability on turbulent mixing of heat around melting ice in the West Antarctic
- Triggers and Feedbacks of Climate Tipping Points
- Uncovering the drivers of non-alcoholic fatty liver disease progression using patient derived organoids
- Understanding recent land-use change in Snowdonia to plan a sustainable future for uplands: integrating palaeoecology and conservation practice
- Understanding the role of cell motility in resource acquisition by marine phytoplankton
- Understanding the structure and engagement of personal networks that support older people with complex care needs in marginalised communities and their ability to adapt to increasingly ‘digitalised’ health and social care
- Unpicking the Anthropocene in the Hawaiian Archipelago
- Unraveling oceanic multi-element cycles using single cell ionomics
- Unravelling southwest Indian Ocean biological productivity and physics: a machine learning approach
- Using acoustics to monitor how small cracks develop into bursts in pipelines
- Using machine learning to improve predictions of ocean carbon storage by marine life
- Vulnerability of low-lying coastal transportation networks to natural hazards
- Wideband fibre optical parametric amplifiers for Space Division Multiplexing technology
- Will it stick? Exploring the role of turbulence and biological glues on ocean carbon storage
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
-
Tuition fees and funding
-
Scholarships
-
Postgraduate scholarships for UK students
- Black Futures scholarship
- GREAT Scholarships 2025 – Egypt
- GREAT Scholarships 2025 – France
- GREAT Scholarships 2025 – Ghana
- Postgraduate Taught Diversity Scholarship (Environmental and Life Sciences)
- Southampton Business School Postgraduate UK Scholarship
- Southampton Genomics Talent Scholarship
- Southampton History Patricia Mather and Helen Patterson Scholarship
- Southampton MA Holocaust scholarships
- Southampton Philosophy David Humphris-Norman Scholarship
- Southampton UK Alumni Music Scholarship
- The National Institute for Health and care Research South Central INSIGHT Programme
- Undergraduate scholarships for UK students
- Competitive scholarships for international postgraduates
- Competitive scholarships for international undergraduates
- Merit scholarships for international postgraduates
- Merit scholarships for international undergraduates
-
Partnership scholarships for international students
- Scholarships, awards and funding opportunities
- Becas Chile Scholarship
- Chevening Scholarships
- China Scholarship Council Scholarships
- COLFUTURO Scholarships
- Commonwealth Distance Learning Scholarships
- Commonwealth Master's Scholarships
- Commonwealth PhD Scholarships
- Commonwealth PhD Scholarships for high income countries
- Commonwealth Shared Scholarships
- Commonwealth Split-Site Scholarships
- FIDERH Scholarships
- Fulbright Awards
- FUNED Scholarships
- Great Scholarships 2024 – Mexico
- Great Scholarships 2024 – Nigeria
- Marshall Scholarship
- Saïd Foundation Scholarships
- British Council Scholarships for Women in STEM
- Southampton Canadian Prestige Scholarship for Law
- Xiamen University PhD Scholarships
- Scholarship terms and conditions
-
Postgraduate scholarships for UK students
-
Scholarships
- Short courses
- Lunchtime evening and weekend courses
- Clearing
- Summer schools
- Get a prospectus
-
Student life
-
Accommodation
- Choose your halls of residence
- Apply for accommodation
- Guaranteed accommodation
- Your accommodation options
- Accommodation for those with additional requirements
- International and pre-sessional students
- Postgraduate accommodation
- Couples and students with children
- Renting privately
- Our accommodation areas
- Privacy notice
- Terms and conditions
- Fees and contracts
- Our cities
- Sports and gyms
- Our campuses
- Join our student community
- Support and money
-
Accommodation
-
Research
- Our impact
- Research projects
- Research areas
- Research facilities
- Collaborate with us
-
Institutes, centres and groups
- Active Living
- Advanced Fibre Applications
- Advanced Laser Laboratory
- Advanced Project Management Research Centre
- Antibody and Vaccine Group
- Astronomy Group
- Autism Community Research Network @ Southampton (ACoRNS)
- Bioarchaeology and Osteoarchaeology at Southampton (BOS)
- Bladder and Bowel Management
- Cell and Developmental Biology
- Centre for Defence and Security Research
- Centre for Developmental Origins of Health and Disease
- Centre for Digital Finance
- Centre for Eastern European and Eurasian Studies (CEEES)
- Centre for Empirical Research in Finance and Banking (CERFIB)
- Centre for Geometry, Topology, and Applications
- Centre for Global Englishes
- Centre for Global Health and Policy (GHaP)
- Centre for Health Technologies
- Centre for Healthcare Analytics
- Centre for Human Development, Stem Cells and Regeneration
- Centre for Imperial and Postcolonial Studies
- Centre for Inclusive and Sustainable Entrepreneurship and Innovation (CISEI)
- Centre for International Film Research (CIFR)
- Centre for International Law and Globalisation
- Centre for Internet of Things and Pervasive Systems
- Centre for Justice Studies
- Centre for Linguistics, Language Education and Acquisition Research
- Centre for Machine Intelligence
- Centre for Maritime Archaeology
- Centre for Medieval and Renaissance Culture (CMRC)
- Centre for Modern and Contemporary Writing (CMCW)
- Centre for Political Ethnography (CPE)
- Centre for Research in Accounting, Accountability and Governance
- Centre for Research on Work and Organisations
- Centre for Resilient Socio-Technical Systems
- Centre for Transnational Studies
- Child and Adolescent Research Group
- Clinical Ethics, Law and Society (CELS)
- Computational Nonlinear Optics
- Cyber Security Academy
- Data Science Group
- Digital Oceans
- EPSRC and MOD Centre for Doctoral Training in Complex Integrated Systems for Defence and Security
- Economic Theory and Experimental Economics
- Economy, Society and Governance
- Electrical Power Engineering
- Environmental Hydraulics
- Gas Photonics in Hollow Core Fibres
- Geochemistry
- Global Health (Demography)
- Global Health Community of Practice
- Gravity group
- Healthy Oceans
- High Power Fibre Lasers
- Hollow Core Fibre
- Human Genetics and Genomic Medicine
- Infection
- Infrastructure Group
- Institute of Developmental Sciences
- Institute of Maritime Law (IML)
- Integrated Photonic Devices
- Integrative Molecular Phenotyping Centre
- Interdisciplinary Musculoskeletal Health
- International Centre for Ecohydraulics Research (ICER)
- Language Assessment and Testing Unit (LATU)
- Laser-Direct-Write (LDW) Technologies for Biomedical Applications
- Law and Technology Centre
- Long Term Conditions
- Magnetic Resonance
- Mathematical Modelling
- Medicines Management
- Molecular and Precision Biosciences
- Multiwavelength Accretion and Astronomical Transients
- National Biofilms Innovation Centre (NBIC)
- National Centre for Research Methods
- National Infrastructure Laboratory
- Nature-Based Ocean Solutions
- Nonlinear Semiconductor Photonics
- Ocean Perception Group
- Operational Research
- Optical Engineering and Quantum Photonics Group
- Paediatrics and Child Health - Clinical and Experimental Sciences
- People, Property, Community
- Photonic Systems, Circuits and Sensors Group
- Physical Optics
- Primary Care Research Centre
- Quantum, Light and Matter Group
- Silica Fibre Fabrication
- Silicon Photonics
- Skin Sensing Research Group
- Southampton Centre for Nineteenth-Century Research
- Southampton Ethics Centre
- Southampton Health Technology Assessments Centre (SHTAC)
- Southampton High Energy Physics group
- Southampton Imaging
- Southampton Theory Astrophysics and Gravity (STAG) Research Centre
- Stefan Cross Centre for Women, Equality and Law
- String theory and holography
- The India Centre for Inclusive Growth and Sustainable Development
- The Parkes Institute
- Tony Davies High Voltage Laboratory
- Ultrafast X-ray Group
- Vision Science
- WSA Exchange
- Work Futures Research Centre (WFRC)
- Support for researchers
- Faculties, schools and departments
- Research jobs
- Find people and expertise
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact