Postgraduate research project

Climate Change effects on the developmental physiology of the small-spotted catshark

Funding
Fully funded (UK and international)
Type of degree
Doctor of Philosophy
Entry requirements
2:1 honours degree View full entry requirements
Faculty graduate school
Faculty of Environmental and Life Sciences
Closing date

About the project

Elasmobranchs (sharks and rays) are important components of marine ecosystems worldwide but are poorly studied compared to many teleost species. Effects of climate change on elasmobranchs are still poorly understand, but their low fecundity and relatively long embryonic development stage could make elasmobranchs particularly vulnerable to some climate change effects. Ocean acidification (OA) has been shown to increase mortality and induce developmental defects in early juvenile teleosts, e.g. (Stiasny et al., 2019), but comparative data on elasmobranchs are lacking as laboratory experiments are relatively difficult. Elasmobranch physiology, reproductive style, blood chemistry and respiratory anatomy all differ markedly from teleosts, so that experimental results from teleosts cannot be assumed to apply. Limited studies to date give contrasting views on the sensitivity of shark developmental physiology to OA, e.g. (Green and Jutfelt, 2014), but very little work has been done, and we have essentially no experimental basis to predict how resilient early development of elasmobranchs is to climate change effects. This project therefore aims to explore the long-term effects of OA and potentially other climate drivers on the early development of sharks, in particular the development of gills and the skeletal structures, which Stiasny et al. (2019) showed to be affected in cod.

For full project details visit the Inspire project page.

Supervisors:

  • Martina Stiasny (University of Southampton)
  • Clive Trueman (University of Southampton)
  • Nalani Schnell (Muséum national d’Histoire naturelle)