Research project

Human responses to airborne ultrasound in public spaces

Staff

Lead researchers

Dr Ben Lineton

Associate Professor

Research interests

  • Much of cochlear physiology and pathophysiology remains poorly understood. For example, how do the 3000 rows of active outer hair cells interact with each other and with other cochlear structures to amplify the waves in the cochlea that allow us to hear? How are the motions of these cochlear structures related to the otoacoustic emissions that we can measure in the ear canal?  What role do the efferent nerves play?  What are the changes brought about by pathology? The long term research goal is to understand human cochlear physiology in both normal and pathological conditions with a view to aiding the development of improved clinical diagnostic techniques and treatments.  One approach to improving our understanding of the electro-mechanical aspect of physiology is to develop realistic models of the cochlea.  These should capture the essential hydrodynamics, structural dynamics, and electrical processes involved in cochlear physiology. The non-linear mechano-electrical and electro-mechanical transduction processes are key aspects of the physiology where our understanding remains at a basic level. The ways in which these models may be useful clinically are: to aid the development of treatments, or prostheses for hearing impairment, to improve our ability to interpret clinical results (such as measurements of otoacoustic emissions or electrophysiology), to aid the development of new clinical tests of cochlear function.
Connect with Ben
Other researchers

Professor Paul White

Prof of Statistical Signal Processing

Research interests

  • Paul has research interests which include signal processing, underwater acoustics and bioacoustics (the way animals, especially marine mammals, use sound). He is primarily concerned with developing tools to assist in the computer-aided analysis of underwater sounds and understanding the role of those sounds in the marine environment.
  • Acoustics, in the form of sonar, is an important tool for the exploration of the marine environment. It is used by the seismic industry to locate oil and gas reserves, by the military to detect objects, by oceanographers to make measurements and by marine mammals to survive.
  • Man-made underwater acoustic systems rely upon computers to process the data coming from sensors to interpret the environment. The processing methods within the computer systems are a critical component often defining the overall success of the instrument.
Connect with Paul

Collaborating research institutes, centres and groups

Research outputs

Timothy Leighton, Ben Lineton, Craig Dolder & Mark Fletcher, 2020, Acoustics Today, 16(3), 17-26
Type: article