Research project

Coastal landfill and shoreline management: implications for coastal adaptation infrastructure

Project overview

Our coastlines need to be managed into the future taking into account the effect of climate change on rising sea levels, whilst balancing public investment and benefits. There is a strong desire to move to more sustainable shoreline management, which allows coasts to be more dynamic in less developed coastal areas. Rather than rigidly defending and holding the existing coastline, shoreline management plans now consider the benefits of "managed realignment" and "no active intervention" policies. However, there is an important legacy of hundreds of coastal landfills located in flood plains around our coasts, including estuaries. This constrains a dynamic policy for shoreline management as storms and rising sea levels may lead to increased flushing of contaminants into the environment and erosion of the landfill may result in the direct exposure and release of potentially hazardous waste. It raises the question about the ability to move/process these landfills (facilitating a move to more dynamic coasts), or alternatively to continue to protect these sites under rising sea levels, potentially creating a lock-in to defence infrastructure approaches.

This project aims to apply NERC-funded and other relevant research at the University of Southampton, together with CIRIA generic guidance C718 on "Guidance on the management of landfill sites and land contamination on eroding or low-lying coastlines", to better understand the effective long-term management of coastal-located waste sites on dynamic coasts. In the context of shoreline management planning it will assess a series of different management approaches that have the potential to address the difficulties that coastal landfills pose.

We will identify 3 to 4 coastal landfills from Lyme Regis to Shoreham and consider their impact on three shoreline management plan strategic options (hold the line, managed realignment, and no active intervention) for two different climate change scenarios. Pollution risks arising from the dual hazards of flooding, leading to the release of contaminated water (leachate), and erosion of the landfills will be considered along with the potential for resource recovery from the old site in any options that involve moving and/or remediating the waste in situ.

Our project partners are the Environment Agency, SCOPAC (Standing Conference on Problems Associated with the Coastline) which is an influential network of local authorities and organisations with an interest in the management of the coast of central southern England, the Eastern Solent Coastal Partnership and the Channel Coastal Observatory hosted by New Forest District Council.

Staff

Other researchers

Dr Richard Beaven

Principal Research Fellow
Connect with Richard

Professor Ivan Haigh

Professor
Research interests
  • I currently have 8 active research grants (4 as principle investigator (PI)) worth £4.8M. 
  • I am the PI on two international grants that started in 2019, both looking at compound flooding. Compound flooding (when the combination, or successive occurrence of, two or more hazard events leads to an extreme impact e.g., coastal and fluvial flooding), can greatly exacerbate the adverse consequences associated with flooding in coastal regions and yet it remains under-appreciated and poorly understood. In the £788k NERC- and NSF- (US National Science Foundation) funded CHANCE project, I am leading a team (working alongside researchers from the University of Central Florida), to deliver a new integrated approach to make a step-change in our understanding, and prediction of, the source mechanisms driving compound flood events in coastal areas around the North Atlantic basin. In the £575k NERC- and NAFOSTED- (Vietnam’s National Foundation for Science and Technology Development) funded project, I am leading a team that is working with colleagues in Vietnam to map and characterise present, and predict future, flood risk from coastal, fluvial, and surface sources and, uniquely, to assess the risk of compound flooding across the Mekong delta; one of the three most vulnerable deltas in the world. I am also the PI on a grant, which started in 2021. In this 41k project, funded by the Dutch Ministry of Infrastructure and Water Management (Rijkswaterstaat), we are assessing past and future closures of the six storm surge barriers in the Netherlands.
  • In 2021, I was awarded a 3-year (50% of my time) prestigious Knowledge Exchange Fellowship funded by NERC (UK’s Natural Environmental Research Council) and worth £154k. This fellowship builds strongly on my prior research and the overall goal is to provide guidance and tools that will help storm surge barrier operators better prepare for the impacts of climate change across every area of their operation now and into the future. Within the fellowship I am working primary with the UK Environment Agency (EA) and the Dutch Ministry of Infrastructure and Water Management (Rijkswaterstaat). However, to ensure the work undertaken can benefit all the existing (and planned) surge barriers around the world, I am also working closely with I-STORM. I-STORM is an international knowledge sharing network for professionals relating to the management, operation and maintenance of storm surge barriers, and has representation from all the surge barriers worldwide.
Connect with Ivan

Professor David Richards BEng MSt PhD CEng FICE

Professor in Ground Engineering
Connect with David

Professor William Powrie

Professor of Geotechnical Engineering
Research interests
  • Railway track and trackbed behaviour and performance
  • Geotechnical transportation infrastructure (earthworks, retaining walls, tunnels)
  • Groundwater and groundwater control
Connect with William

Collaborating research institutes, centres and groups

Research outputs

Robert Nicholls, R.P. Beaven, Anne Stringfellow, Daniel Monfort, Gonéri Le Cozannet,, Thomas Wahl, Julia Gebert, Matthew Wadey, Arne Arns, Kate Spencer, Debra Reinhart, Timo Heimovaara, Victor Malagon Santos, Alejandra R. Enríquez & Samantha. N Cope, 2021, Frontiers in Marine Science, 8
Type: review
R.P. Beaven, Anne Stringfellow, Robert Nicholls, Ivan Haigh, Abiy S Kebede & Jenny Watts, 2020, Waste Management, 105, 92-101
Type: article